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ABSTRACT 

  A new computational technique for rank of some semigroup is presented. The technique is based 

on matrix representation and simplifies the computational efforts encountered using direct 

definition technique of computing ranks. The important of this idea for the study of abstract groups 

seems to depend on the fact that group-theoretical calculations are easier to carry out in groups 

of matrices than in abstract groups. Its effectiveness is demonstrated in the computation of the 

rank of certain transformation semigroup, symmetry semigroup (S3), Dihedral group (D4), 

monogenic semigroup and the inverse semigroup. The new technique has been further employed 

in the computation of rank of Markov semigroup, a semigroup which admits a prefix-closed 

regular language of unique representatives with respect to some generating set. 

Keywords: Monoid, Transformation semigroup, Representation, Markov semigroup and Echelon 

matrix 

 

1         INTRODUCTION 

The notion of ‘rank’, or ‘dimension’, belongs primarily to linear algebra. One can define the rank 

of a (finite-dimensional) vector space V either as the cardinality of a maximal linearly independent 

subset or as the cardinality of a minimal generating set of V, and it is an elementary result in linear 

algebra that these two cardinalities are equal. 

 If we try to extend the concept of rank to a more general algebraic system such as a semigroup, 

or indeed even a group, we find that the possible definition of rank (of which we have so far given 

only two) give different values. 

For a semigroup S, the “classical” idea of rank is concerned with finding minimum size generating 

sets for S. When working with a finitely generated semigroup S determining the rank of S, denoted 

rank(S), is a natural consideration. The rank properties given by Howie and Ribeiro in 1999 looks 

very difficult in computing the rank of some semigroup, but this new method (matrix 

representation) is easy to carry out when one is able to list out the element of that semigroup. 

1.2 Monoid:  Let S be a semigroup, An element 𝑥 ∈ 𝑆 is a left identity of S, if  
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                                 ∀ 𝑦 ∈ 𝑆: 𝑥 ∙ 𝑦 = 𝑦 

Similarly, 𝑥 is a right identity of S, if  

                        ∀ 𝑦 ∈ 𝑆: 𝑦 ∙ 𝑥 = 𝑦. 

If 𝑥 is both a left and a right identity of S, then 𝑥 is called an identity of S. A semigroup is a monoid 

if it has an identity. 

1.3  Homomorphisms  

Let (S, ·) and (P, ⋆) be two semigroups. A mapping α: S → P is a homomorphism, if 

      ∀x, y ∈ S : α(x · y) = α(x) ⋆ α(y)  

Thus a homomorphism respects the product of S while ‘moving’ elements to P (which may have 

a completely different operation as its product). However, a homomorphism may also identify 

elements: α(x) = α(y). 

1.3.1 Example  (1) Let S = (N,+) and P = (N, ·), and define α(n) = 2n for all     n∈ N. Now, 

        α(n + m) = 2n+m = 2n · 2m = α(n) · α(m) , 

and hence α: S → P is a homomorphism. 

 (2) Let S be the semigroup of integers S = (ℤ, ·) under multiplication, and let P be the semigroup 

of integers P = (ℤ,+) under addition. Define a mapping α: S → P by 

α(n) = n for all n ∈ℤ. Then α is not a homomorphism, because 6 = α(6) = α(2·3) ≠α(2) + α(3) = 5. 

.1.4 The full transformation semigroup 

            Let X be again a set, and denote by TX the set of all functions 𝛼: 𝑋 →  𝑋. Then TX is the 

full transformation semigroup on X with the operation of composition of functions. 

1.5 Representations 

A homomorphism ϕ: S → TX is a representation of the semigroup S. We say that ϕ 

is a faithful representation, if it is an embedding, ϕ: S ↪TX. 

The following theorem states that semigroups can be thought of as subsemigroups 

of the full transformation semigroups, that is, for each semigroup S there exists a set X such that 

S ≅ P ≤ TX for a subsemigroup P of transformations 

1.5.1 Theorem . Every semigroup S has a faithful representation. 

Proof. Let X = S1, that is, add the identity 1 to S if S is not a monoid. Consider the 

full transformation semigroup 𝑇 =  𝑇𝑆1. For each 𝑥 ∈  𝑆 define a mapping 

𝜌𝑥 ∶  𝑆
1  →  𝑆1, 𝜌𝑥(𝑦)  =  𝑥𝑦 (𝑦 ∈  𝑆

1) . 
Thus 𝜌𝑥 ∈ T, and for all x, y ∈ S and for all z ∈𝑆1, 

𝜌𝑥𝑦 (𝑧)  =  (𝑥𝑦)𝑧 =  𝜌𝑥(𝑦𝑧)  =  𝜌𝑥 (𝜌𝑦(𝑧))  =  𝜌𝑥𝜌𝑦(𝑧) , 

and hence 𝜌𝑥𝑦 = 𝜌𝑥𝜌𝑦. Consequently, the mapping 

𝜙: 𝑆 →  𝑇, 𝜙(𝑥)  =  𝜌𝑥 
is a homomorphism. For injectivity we observe that 

𝜙(𝑥)  =  𝜙(𝑦)  ⇒  𝜌𝑥  =  𝜌𝑦  ⇒  𝜌𝑥(1)  =  𝜌𝑦(1)  ⇒  𝑥 =  𝑦 . 

     1.6 Word semigroups:    Let A be a set of symbols, called an alphabet. Its elements are letters. 

Any finite sequence of letters is a word (or a string) over A. The set of all words over A, with at 

least one letter, is denoted by A+. For clarity, we shall often write u ≡ v, if the words u and v are 

the same (letter by letter). 
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The set A+ is a semigroup, the word semigroup over A, when the product is defined 

as the catenation of words, that is, the product of the words 𝑤1  ≡  𝑎1𝑎2 . . . 𝑎𝑛, 𝑤2  ≡
𝑏1𝑏2 . . . 𝑏𝑚 (𝑎𝑖, 𝑏𝑖  ∈  𝐴) is the word 𝑤1  ·  𝑤2  =  𝑤1𝑤2  ≡  𝑎1𝑎2 . . . 𝑎𝑛𝑏1𝑏2 . . . 𝑏𝑚. 
When we join the empty word 1 (which has no letters) into A+, we have the word 

monoid A∗, A∗ = A+ ∪{1}. Clearly, 1 · w = w = w·1 for all words w ∈ A∗. 

1.6.1  Example .  Let 𝐴 =  {𝑎, 𝑏} be a binary alphabet. Then             𝑎, 𝑏, 𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏, 𝑎𝑎𝑎, 𝑎𝑎𝑏, . 
. . are words in A+. Now, 𝑎𝑏 · 𝑏𝑎𝑏 ≡  𝑎𝑏𝑏𝑎𝑏. As usual, 𝑤𝑘 means the catenation of w with itself  

k times, and so, for example, 𝑣 ≡  𝑎𝑏3(𝑏𝑎)2  ≡  𝑎𝑏𝑏𝑏𝑏𝑎𝑏𝑎 ≡  𝑎𝑏4𝑎𝑏𝑎. 
1.6.2  Free semigroups 

       Let S be a semigroup. A subset X ⊆ S generates S freely, if S = [X]S and every mapping α0 : 

𝑋 →  𝑃 (where P is any semigroup) can be extended to a homomorphism  𝛼: 𝑆 →  𝑃 such that 𝛼 ↾
𝑋 = α0. Here we say that α is a homomorphic extension of  the mapping α0. If S is freely generated 

by some subset, then S is a free semigroup. 

1.6.3 Example . (1) (ℕ+,+) is free, for 𝑋 = {1} generates it freely: Let 𝛼0 ∶  𝑋 →  𝑃 be a 

homomorphism, and define 𝛼: ℕ+  →  𝑃 by α(n) = α0(1)n. Now, α↾X = α0, and α is a 

homomorphism: α(n + m) = α0(1)n+m = α0(1)n · α0(1)m = α(n) · α(m). 

(2) On the other hand, (ℕ+, ·) is not free. For, suppose X ⊆ℕ+, choose P = 

(ℕ+,+), and let α0(n) = n for all n∈X. If α: (ℕ+, ·) → P is any homomorphism, then α(n) = α(1 · n) 

= α(1) + α(n), and thus 𝛼(1) =  0 ∉  𝑃. So certainly no α can be an extension of 𝛼0. 

1.7 Generating Sets:    Let X be a subset of a semigroup S, we say that the set X generates S as a 

semigroup if every element of S can be written as a product of element of X. Let X be the subset 

of an inverse semigroup I, we say that the set X generate I as an inverse if the set XUX-I  generates 

I as a semigroup where X-I is the set of inverses ( in the semigroup theoretic sense) of element of 

X. Let X be the subset of a monoid M, we say that X generates M as a monoid if the set Xu{1M} 

generates M as a semigroup, where 1M is the identity of M. A set which generate a semigroup S as 

a semigroup is called a semigroup generating set for S. 

   A semigroup which can be generating as a semigroup by a finite set is called finitely generated. 

1.8  Definitions:    Howie and Ribeiro (1999), introduced 

five different type of rank for semigroups. These ranks 

r1(S), r2(S), r3(S), r4(S) and r5(S), are defined as follows: 

• r1(S) = max{k : every subset U of S cardinality k is independent} 

• r2(S) = min{k : there exists a subset U of S cardinality k such that U 

generates S} 

• r3(S) = max{k : there exists a subset U of S cardinality k which is 

independent and generates S} 

• r4(S) = max{k : there exists a subset U of S cardinality k which is 

independent} 

• r5(S) = min{k : every subset U of S cardinality k generates S} 

It has been proved that r1(S) ≤ r2(S) ≤ r3(S) ≤ r4(S) ≤ r5(S), and for 

convenience, the terminology has been used as r1(S) is small rank, 

r2(S) is lower rank, r3(S) is intermediate rank, r4(S) is upper rank and r5(S) 

is large rank. Here, the lower rank is what is normally called the rank, which 

has been extensively studied. 
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1.9 Echelon form: A matrix that has undergone Gaussian elimination is said to be in row echelon 

form or, more properly, "reduced echelon form" or "row-reduced echelon form." Such a matrix 

has the following characteristics:  

1. All zero rows are at the bottom of the matrix  

2. The leading entry of each nonzero row after the first occurs to the right of the leading entry of 

the previous row.  

3. The leading entry in any nonzero row is 1.  

4. All entries in the column above and below a leading 1 are zero.  

Another common definition of echelon form only requires zeros below the leading ones, while the 

above definition also requires them above the leading ones.  

1.10  Matrix representation 

          The theory of group representation is concerned with the problem of classifying 

homomorphisms of an abstract finite group into groups of matrices or linear transformation. 

        A matrix representation of a group G of degree n is homomorphism  

                     𝑇: 𝑔 →  𝑇(𝑔) of G into GL(n, k) 

Two matrix representation T and TI are equivalent if they have the same degree, say n, and if there 

exists a fixed matrix M in GL(n, k) such that  

               TI(g)= MT(g)M-I         (g∈ 𝐺) 

  If T is a representation of G with space S, then from the homomorphism proprety we have 

                                                    𝑇(𝑎𝑏) = 𝑇(𝑎)𝑇(𝑏),              (𝑎, 𝑏 ∈ 𝐺 

𝑇(𝑎)−1 = 𝑇(𝑎−1), 
𝑇(1) = 1𝑆 

Where 1𝑆 denotes the identity mapping on S. The corresponding statement holds, of course, for 

matrix representations. 
 Example is the permutation representation of a group 

1.11Markov Semigroup 

         Examine the interaction of Markov semigroups with adjoining identities and zeros, with 

direct products, with free products, and with finite index subsemigroups and extensions. Finally, 

the class of languages that are Markov languages for semigroups is considered in [2]. 

Since the study of Markov semigroups seems to be an entirely new area, there are many possible 

directions for further research. Consequently, various language theory. 

 

The different rank properties described by Howie and Ribeiro in 1999 and the difficulties in 

computing each rank inspired this alternative approach in computing rank. We shall construct a 

cayley tabel for each of the semigroup. Transform it into matrix representation form, and finally 

to Echelon form and then compute the rank. 
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2                                    MAIN RESULT 

 (1) The rank of the upper triangular integer matrices  

𝑆 = {(
1 𝑛
0 1

) ∶ 𝑛 ≥ 1} 

is 4  

 (2) The rank of a semigroup 𝑆 = {𝑜, 𝑒, 𝑓, 𝑎, 𝑏}  where 

              𝑂 = (
0 0
0 0

) , 𝑎 = (
0 1
0 0

) , 𝑏 = (
0 0
1 0

) , 𝑒 = (
1 0
0 0

) , 𝑓 = (
0 0
0 1

)                                                                                   

is 2  

 (3) Let X ={1, 2, 3}.  A mapping 𝛼 ∶ 𝑋 → 𝑋 which is defined by 

 𝛼(1) = 2, 𝛼(2) = 3, 𝑎𝑛𝑑 𝛼(3) = 3   

 that is for 

𝛼 = (
1 2 3
2 3 3

) and  𝛽 = (
1 2 3
1 1 2

) where S=〈𝛼, 𝛽〉𝑇𝑋  is the subsemigroup of 𝑇𝑋 

𝛼  𝑎𝑛𝑑 𝛽 generated by 𝛼  𝑎𝑛𝑑 𝛽. The rank is 4 

(4) The dihedral group has rank equal 6 

2.1 Considering mealy automaton construction the rank associated with the markov semigroup of 

that state function is 1 when the input and output are different and 2 when they are the same. 

3                                                 DETAILS 

The word "rank" refers to several related concepts in mathematics involving graphs, groups, 

matrices, quadratic forms, sequences, set theory, statistics, and tensors.  

The rank of a mathematical object is defined whenever that object is free. In general, the rank of 

a free object is the cardinality of the free generating subset G.  

 Cayley table of some semigroups and their matrix representations 

   The following examples of semigroups and their matrix representation are used for  

computation: 

1. A set S= 𝑍6 = (0, 1, 2, 3, 4, 5) is a semigroup. 

The cayley table for (S, +) and (S, .) is as follows 

 

 

 

 

 

 

 

+  0 1 2 3 4 5   

0 0 1 2 3 4 5  

1 1 2 3 4 5 0 

2 

3 

4 

5 

2 3 4 5 0 1  

3 4 5 0 1 2 

4 5 0 1 2 3  

5 0 1 2 3 4   
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Notice that for (S, +) the generator is 1, so that matrix representation for 1 is  

R(1) =

(

  
 

0 1 0 0  0 0 
1 0 0 0 0 0 
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0  1 0 0
0 0 1 0 0 0 )

  
 

  

For (S, .), the matrix representation is  

R(1) = 

(

  
 

0 0 0 0  0 0 
0 1 0 0 0 0 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0  0 0 0
0 0 0 0 0 1 )

  
 

     ,      R(2) = 

(

  
 

0 0 0 0  0 0 
0 0 1 0 0 0 
0 1 0 0 1 0
0 0 0 0 0 0
0 0 0  0 0 1
0 0 0 0 1 0 )

  
 

 

R(3) = 

(

  
 

0 0 0 0  0 0 
0 0 0 1 0 0 
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0  0 0 0
0 0 0 1 0 0 )

  
 

,    R(5) = 

(

  
 

0 0 0 0  0 0 
0 0 0 0 0 1 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0  0 0 0
0 1 0 0 0 0 )

  
 

 

2.  Let S = { 𝑜, 𝑒, 𝑓, 𝑎, 𝑏} be the semigroup where  

O =  (
0  0
0 0
),  a = (

0  1
0 0
),  b =  (

0  0
1  0

),   e = (
1  0
0 0
), f = (

0  0
0 1
) 

The cayley table is as follows: 

•   0 1 2 3 4 5   

0 0 0 0 0 0 0  

1 0 1 2 3 4 5  

2 

3 

4 

5 

0 2 4 0 2 4 

0 3 0 3 0 3 

0 4 2 0 4 2  

0 5 4 3 2 1   
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 Notice that e = ab, 𝑏2 = 0 = 𝑎2 

       = fa = ef = bf = fe and f = ba 

 a and b generate S. 

 

The matrix representation R of the above table is  

R(a) = 

(

 
 

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0)

 
 

,    R(b) =  

(

 
 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0)

 
 

 

3. The group 𝐷4 consists of elements  

{(1), (1234), (13)(24), (14)(23), (1432), (12)(34), (24), (13)}  

To construct a cayley table I will like to rearranged my group 𝐷4 as follows 

𝐷4 = X = {𝑒, 𝑎, 𝑏, 𝑐, ℎ, 𝑘, 𝑟, 𝑠} such that  

E = (1), a = (1432), b = (13) (24), c = (1234), h = (12) (34), k = (14) (23), r = (24), S = (13) 

The table is as follows; 

 

(X, o) is a semigroup 

Since composition of permutation is  

 Associative. 

 

The matrix representation R of 𝐷4 is 

•   o e f a b  

0  0 0 0 0 0 

e o e o a o  

f o o f o b  

a o o a o e   

b o b o f o 

O e a b c h k r s  

e e a b c h k r s  

a a b c e s r h k   

b 

c 

h 

k 

r 

s 

b c e a k h s r 

c e a b r s k h  

h r k s e b a c  

k s h r b e c a  

r k s h c a e b  

s h r k a c b e  
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R(c) = 

(

 
 
 
 
 

0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0)

 
 
 
 
 

,    R(k) = 

(

 
 
 
 
 

0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0)

 
 
 
 
 

 

4. The set H = {(1), (1234), (13)(24), (1432)} is a subgroup of 𝐷4 and the cayley table is 

shown below: 

 

 

(H, *) is a semigroup 

 

 

 

 

The matrix representation R 

is  

R(1234) = (

0 1 0 0 
1 0 0 0 
0 0 0 1
0 0 1 0

) 

4           Rank of the matrix representation 

 We shall use the following notations; R for matrix representation, r for rank and ER for echelon 

form of the matrix representation. 

R(1) = 

(

  
 

0 1 0 0 0 0 
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0 
0 0 1 0 0 0)

  
 

 for (S, +),    ER(1) = 

(

  
 

1 0 0 0 0 0 
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0 
0 0 0 0 0 1)

  
 

 

1.  

r(1) = 6 

then for the semigroup (S,.) 

* (1)      (1234)    (13) (24)  (1432)  

(1)  (1)         (1234)  (  13) (24)  (1432) 

(1234) (1234)    (13)(24)  (1432)      (1) 

(13) (24) 

(1432) 

 

(13) (24)  (1432)     (1)     (1234) 

(1432)     (1)         (1234)  (13) (24) 
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R(1) = 

(

  
 

0 0 0 0 0 0 
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 
0 0 0 0 0 1)

  
 

,       R(2) 

(

  
 

0 0 0 0 0 0 
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1 
0 0 0 0 1 0)

  
 

 

R(3) = 

(

  
 

0 0 0 0 0 0 
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0 
0 0 0 1 0 0)

  
 

,         R(5) = 

(

 
 

0 0 0 0 0 0 
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0 )

 
 

 

ER(1) = 

(

  
 

0 1 0 0 0 0 
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 
0 0 0 0 0 0)

  
 

,                ER(2) = 

(

  
 

0 1 0 0 0 0 
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0 
0 0 0 0 0 0)

  
 

 

ER(3) = 

(

  
 

0 1 0 1 0 1 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 
0 0 0 0 0 0)

  
 

,                ER(5) =  

(

  
 

0 1 0 0 0 0 
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 
0 0 0 0 0 0)

  
 

 

R(1) =  2,     r(2) = 3,    r(3) = 1,     r(5) = 2 

2. ER(1234) = (

1 0 0 0
0 1 0 0 
0 0 1 0
0 0 0 1

) 

r(1234) = 4 

3. Consider the group consisting of the elements where 

G = {𝑒, 𝑥, 𝑥2, 𝑦, 𝑥𝑦, 𝑥2𝑦, 𝑥3 = 𝑒 =  𝑦2, 𝑥𝑦 = 𝑦𝑥2}  

The cayley table is as shown below 

 

 

 

 

The matrix representations: 

 e   x   𝑥2  y   xy   𝑥2y  

e  e   x   𝑥2  y   xy   𝑥2𝑦 

x x  𝑥2   e   xy   𝑥2𝑦  y 

𝑥2 

y 

xy 

𝑥2𝑦 

𝑥2 e    x    𝑥2𝑦  y    xy 

y  𝑥2𝑦 xy   e    𝑥2   x 

xy  y   𝑥2𝑦  x  e     𝑥2 

𝑥2𝑦  𝑥𝑦  𝑦   𝑥2   x     e 
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R(e) = 

(

  
 

1 0 0 0 0 0 
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1)

  
 

,     R(x) = 

(

  
 

0 1 0 0 0 0 
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0)

  
 

,     R(y) = 

(

  
 

0 0 0 1 0 0 
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0)

  
 

 

x and y generates the semigroup and so the representation of x and y is enough. The echelon 

form and the rank are equal.  

That is  

r(e)  = r(x)  = r(y)  = 6  

 

REFERENCES 

[1] ABDULAHI UMAR*(1996), ‘On the Rank of Certain Finite semigroup of order-decreasing 

Transformation’, Portugaliae Mathematica vol.53 Fac.  

[2] ALAN J. C AND VICTOR M. (2014), ‘Markov Semigroup, monoid and Group’, International Journal 

of algebra and computation 24,No.5, DOI:10.11.42/S021819671450026X 

[3] David E. E. and Udoaka O. G. (2014),  ‘Rank of maximal subgroup of a full transformation semigroup’, 

International Journals of current research ,vol. 6, issue 09, pp.8351-8354 

[4] GIRALDES E. AND HOWIE J.M., (1985), “ Semigroups of high rank”, Proc.      Edinburgh  Math. 

Soc. (2), 28 , 13 - 34. 

[5] GOMES G. M. S.  AND. HOWIE J.M, (1987), “ On the rank of certain finite semigroups of 

transformations’, Math. Proc. Cambridge Philos. Soc., 101 395- 403. 

[6] HOWIE J. M., (1976), An introduction to semigroup theory, (Academic press, London). 

[7] Howie J.M.  and M. I. M. Riberio,(1999), ‘ Rank properties in finite semigroups’, Comm. in Algebra, 

27, 5333 - 5347. 

[8] HOWIE J.M.,(1995) Fundamentals of semigroup theory, Oxford University Press, New York,. 

II: the small rank and the large rank’, Southeast Asian Bull. Math., 24 

[9] Udoaka O. G, Asibong-Ibe U. I. and David E. E. (2016). Rank of product of certain algebraic 

classes.  IOSR Journal of Mathematics, 12, e-ISSN: 2278-5728, 6, ver. 1, pg 123-125, 

www.iosrjournals.org. 

[10] Udoaka, Otobong G. & Nwawuru Francis,(2018).  Free Semigroup Presentations, 

International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 

3 

http://www.iosrjournals.org/


 
International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 9 No. 3 2023 www.iiardjournals.org 
 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 100 

[11] Udoaka Otobong and David E.E.(2014). Rank of Maximal subgroup of a full 

transformation semigroup. International Journal of Current Research, Vol., 6. 

Issue, 09, pp,8351-8354,  www.journalcra.com. 

[12] Udoaka, O. G., Generators and inner automorphism, THE COLLOQUIUM -A Multi-

disciplinary Thematc Policy Journal www.ccsonlinejournals.com. Volume 10 , Number 1 , 

2022 Pages 102 -111 CC-BY-NC-SA 4.0 International Print ISSN : 2971-6624 eISSN: 2971-

6632. 

[13] Udoaka, O. G. and Sampson, Marshal I. (2018). Direct Product of Brandt 

Semigroup and Its Rank as a Class of Algebra, IOSR Journal of Mathematics 

(IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 14, Issue 4 Ver. II, 

PP 68-71 

 

 

http://www.journalcra.com/

